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Abstract
Surface tension effect on a two-dimensional channel flow against an inclined
wall is considered. The flow is assumed to be steady, irrotational, inviscid
and incompressible. The effect of surface tension is taken into account and
the effect of gravity is neglected. Numerical solutions are obtained via series
truncation procedure. The problem is solved numerically for various values
of the Weber number α and for various values of the inclination angle β between
the horizontal bottom and the inclined wall.

PACS numbers: 47.15.Hg, 47.20.Dr, 47.27.Wg
Mathematics Subject Classification: 76B10, 76C05, 76M25

1. Introduction

We consider a steady two-dimensional channel flow against a wall of semi-infinite length,
making an angle β with the horizontal (figure 1(a)). The fluid is assumed to be inviscid,
incompressible and the flow is irrotational. If we take the symmetry of the flow with respect
to the bottom wall, which is a streamline, we obtain a symmetrical jet flow impinging into an
angle formed by the two semi-infinite plates (figure 1(b)). Jets impinging on walls were studied
by many authors. Peng and Parker [12] considered a fluid jet impinging on an uneven wall.
In their article, the authors considered different smooth geometry of the wall, symmetrical
and non-symmetrical. Neglecting the gravity and the surface tension they could formulate
the problem into an integral equation on the free boundary which they solved numerically.
Dias, Elcrat and Trefethen [8] considered a jet emerging from a polygonal nozzle, neglecting
the gravity and surface tension. Despite that the problem could theoretically be solved by
the hodograph and Schwartz–Christoffel transform, but in the case where the nozzle has
many corners, the Schwartz–Christoffel transform is obsolete. To remedy this mathematical
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Figure 1. (a) Sketch of the channel flow and the coordinates. The depth of the flow far downstream
H̃ . The free surface is A′C′B ′, β is the angle between the horizontal bottom and the inclined wall.
The figure is an actual computed surface profile for β = 2π

3 and α = 200. (b) Sketch of a jet flow
impinging into an angle of 2(π − β). The width of the jet at infinity is 2H̃ . The jet is assumed
to be symmetrical, so that the dividing streamline is the straight line AO. The x-axis is along the
streamline AO and the y-axis is vertically upward through the point O. The figure is an actual
computed surface profile for β = 2π

3 and the Weber number = 200.

limitation, the authors described an efficient mathematical procedure for computing two-
dimensional ideal jets issuing from an arbitrary polygonal container. Vanden–Broeck and
Tuck [14] calculated flow near the intersection of a vertical wall with a free surface taking into
account gravity only and then gravity and surface tension. In the later work they presented
local gravity-capillary solution near the intersection of a free surface with a wall. Similar work
can be found in the study of the bow flow in which the dividing streamline can be simulated to
a hard bottom. In 1993, Dias and Vanden–Broeck [9] computed via a series truncation method
a model for the spray at the bow of a ship. They considered the gravity and neglected the
surface tension. Because they did not neglect the gravity, the spray was modeled by a layer of
water rising along the bow and following back as a jet.

In this paper, we neglect the effect of gravity but we take into account the effect of surface
tension. Far upstream the velocity of the flow is a constant Ũ and the depth of the fluid is H̃ .

When the effect of surface tension and gravity g is neglected, the problem has an exact
solution that can be computed via the streamline method due to Kirchhoff (see, for example,
[3, 4]).

If the effect of surface tension or gravity is considered, the boundary condition on the
free surface is nonlinear and the problem does not have a known analytical solution. A series
truncation procedure is employed to calculate the flow against a wall. This technique has been
used successfully by Birkhoff and Zarantonello [4], Vanden–Broeck and Keller [15], and Dias
and Vanden–Broeck [9] to calculate nonlinear free surface flow and bow flow.

As we shall see, the flow is characterized by two parameters: the angle β between the
horizontal bottom and the inclined wall, and the Weber number α defined by

α = ρ̃Ũ 2H̃

T̃
. (1.1)
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Here T̃ is the surface tension and ρ̃ is the density of the fluid.
The problem is formulated in section 2, the numerical procedure is described in section 3

and the results are discussed and presented in section 4.

2. Formulation of the problem

Let us consider the motion of a two-dimensional potential flow in a channel against an inclined
wall of semi-infinite length. the inclined wall meets the horizontal bottom at the point O making
an angle β. We assume that the fluid is inviscid, incompressible and the flow is irrotational
and steady. Since the flow is considered to be potential the normal velocity vanishes on the
rigid boundaries: the horizontal bottom and the inclined wall. Far upstream, we assume that
the flow is uniform so that the velocity approaches a constant Ũ and the depth of the fluid
tends to a constant H̃ . The flow is limited by the free streamline A′C ′B ′, the horizontal bottom
wall AO and the inclined wall OB. In the absence of gravity the main flow extends to infinity
in the direction of the bottom wall far upstream and in the direction of the inclined wall OB

far downstream (figure 1(a)). If we take the symmetry of the flow with respect to the straight
streamline AO, we obtain a symmetrical jet flow impinging against two inclined walls making
an angle of 2(π − β) between them (figure 1(b)). Thus, the following formulation is valid
for the two problems. Our formulation is made for the flow in a channel. We choose the
Cartesian coordinates such that the x̃-axis is along the bottom streamline and passes through
the stagnation point O and the ỹ-axis is vertically upward through the point O (considered
as the origin of the axes). The angle β is counted positive in the counterclockwise from the
positive axes. Since the flow is potential and is considered to be steady with the same velocity
Ũ far upstream and downstream, it should be symmetrical with respect to the bisector of the
angle AOB. Let C ′ denotes the intersection of the bisector of the angle AOB and the free
surface, and let (x̃c, ỹc) be its coordinates.

In this paper, we neglect the effect of gravity but we take into account the effect of surface
tension. if we neglect the effects of surface tension and gravity the problem has an exact
analytical solution that can be computed via hodograph transformation and free streamline
theory.

Since the flow is irrotational and the fluid is incompressible, we define the complex
variable z̃ = x̃ + iỹ and the complex potential function f̃ = φ̃ + iψ̃ where φ̃ is the potential
function and ψ̃ is the stream function. Since φ̃ and ψ̃ are conjugate solutions of Laplace’s
equation, f̃ (z̃) is an analytic function of z̃ within the flow region. The complex conjugate
velocity is given by

ζ̃ = df̃

dz̃
= ũ(x̃, ỹ) − iṽ(x̃, ỹ) (2.1)

where ũ and ṽ are the horizontal and vertical components of the fluid velocity, respectively,
and may be expressed as

ũ = ∂φ̃

∂x̃
= ∂ψ̃

∂ỹ
, ṽ = ∂φ̃

∂ỹ
= −∂ψ̃

∂x̃
. (2.2)

Without loss of generality, we choose ψ̃ = 0 on the streamline AOB and φ̃ = 0 at the
origin O ((x̃, ỹ) = (0, 0)). The complex potential f̃ maps the flow domain conformally onto
the infinite strip of width ŨH̃ as shown in figure 2.

On the free streamline (free surface) A′C ′B ′, the Bernoulli equation is to be satisfied, that
is

1

2
q̃2 +

p̃

ρ̃
= C on ψ̃ = ŨH̃ , −∞ < φ̃ < +∞ (2.3)
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Figure 2. The complex potential f -plane, f̃ = φ̃ + iψ̃ .

where p̃ is the pressure of the fluid in a point on the free surface A′C ′B ′, ρ̃ is the density of
the fluid and q̃ =

√
ũ2 + ṽ2 is the speed of the fluid particle on the free surface. Let p̃0 be the

pressure outside the fluid just above the free surface. p̃0 is considered to be a constant. Since
far upstream the free surface is horizontal, we have p̃ = p̃0. Thus, the constant C in equation
(2.3) is evaluated far upstream and is given by

1

2
Ũ 2 +

p̃0

ρ̃
= C.

A relationship between p̃ and p̃0 is given by Laplace’s capillary formula

p̃ − p̃0 = −T̃ K̃. (2.4)

Here K̃ is the curvature of the free surface and T̃ is the surface tension with the convention
that K̃ is positive if the center of curvature of the free surface is inside the fluid and K̃ is
negative otherwise.

If we substitute (2.4) into (2.3) we obtain

1

2
q̃2 − T̃

ρ̃
K̃ = 1

2
Ũ 2. (2.5)

We introduce the dimensionless variables by taking H̃ as the unit length and Ũ as the unit
velocity. The dimensionless variables are given by

x = x̃

H̃
, y = ỹ

H̃
, q = q̃

Ũ
, K = H̃ .R̃, c = ỹc

H̃
, (2.6)

the dimensionless parameter c has a special characteristic: it measures the ratio of the depth
of the nearest point on the free surface to the stagnation point O to the depth of the fluid at
infinity, in some papers [1, 10] this ratio is called the contraction coefficient. The dimensionless
complex potential function and the dimensionless complex velocity are given by

f = φ + iψ, ζ = df

dz
= u − iv.

Hence

u = ∂φ

∂x
= ∂ψ

∂y
and v = ∂φ

∂y
= −∂ψ

∂x
.

(Here z = x + iy, φ is the dimensionless potential function, ψ is the dimensionless stream
function, u is the component of the dimensionless velocity in the direction of the x-axis and
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v is its component in the direction of the y-axis.) In the dimensionless form, the Bernoulli
boundary equation (2.5) reduces to

q2 − 2

α
K = 1. (2.7)

Here α is the Weber number defined in (1.1).
The physical flow problem as formulated above can be formulated as a boundary value

problem in the potential function φ(x, y):

(1) ∇2φ = 0 in the flow domain.
(2) ∂φ

∂η
=0 on the rigid boundary (the normal velocity vanishes on the rigid boundaries).

(3) |∇φ|2 − 2
α
K = 1 on the free surface.

(4) φ(0, 0) = 0.

Solving the problem in this form is very difficult especially that the nonlinear boundary
condition is specified on an unknown boundary (the free surface). Instead of solving the
problem in its partial differential equation form in φ, we take advantage of the property that
for the bidimensional potential flow (as is in our problem) and if the plane in which the
flow is embedded is identified to the complex plane, the complex velocity ζ = u − iv and
the complex potential function f = φ + iψ are analytical functions. Hence, we use all the
necessary properties of analytical functions of a complex variable: integral formulation, series
formulation, conform transformation, etc.

We rewrite the dimensionless complex velocity in the new variables τ and θ as

ζ = u − iv = eτ−iθ , (2.8)

where eτ = |ζ | and θ is the angle the streamline makes with the x-axis. We seek τ and θ

as functions of the variables φ and ψ . In these variables (φ,ψ) the flow domain is the strip
−∞ < φ < +∞ and 0 � ψ � 1.

Hence, equation (2.7) becomes

∂θ

∂φ
= α

2
(eτ − e−τ )ψ = 1, −∞ < φ < ∞. (2.9)

The kinematic condition on AO and OB yields{
θ = 0, ψ = 0,−∞ < φ < 0 on AO

θ = β,ψ = 0, 0 < φ < ∞ on OB
. (2.10)

We shall seek τ − iθ as an analytic function of f = φ + iψ in the region 0 < ψ < 1.
We go a step further with conformal mapping. Using the Schwartz–Christoffel

transformation, we map the strip 0 < ψ < 1 in the f -plane onto the lower half of the
unit disc of an auxiliary t-plane by the transformation

f = 2

π
log

(
1 − t

1 + t

)
. (2.11)

The stagnation point O is mapped into the origin, the points at infinity A = A′ and B = B ′

correspond to the points t = 1 and t = −1, respectively. Due to the symmetry, the point C is
mapped onto the point t = −i. The solid boundary maps onto the real diameter and the free
surface onto the lower half unit circle (figure 3).

In all the flow domains, the complex velocity ζ(t) = u − iv is analytic except at the point
O, which corresponds to t = 0, where the flow is inside a corner. Hence, a close study in the
neighborhood of this point is to be done.
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At t = 0, we have a flow inside an angle of measure π − β, this gives the local behavior
of ζ(t) as

ζ = ©(t
β

π ) as t −→ 0. (2.12)

Now that we know the local behavior of ζ(t) near the singularity, we seek the function ζ(t) as
a series of the form

ζ(t) = t
β

π exp

( ∞∑
i=0

ant
2n

)
. (2.13)

The coefficients an are to be determined. Since (2.13) satisfies (2.12) we expect the series to
converge in the lower half disc in the t-plane. The coefficients an are chosen to be real, so that
the boundary conditions (2.10) are satisfied, i.e., u = cos β on OB and v = 0 on AO.

We use the notation t = |t | eiσ so that the points on A′C ′B ′ are given by t = eiσ and
−π < σ < 0. Using (2.11), the expression (2.9) is rewritten as

exp(2τ) − π

α
exp(τ ) sin(σ )

∣∣∣∣ ∂θ

∂σ

∣∣∣∣ = 1. (2.14)

Here τ(σ ) and θ(σ ) denote the values of τ and θ on t = eiσ and −π < σ < 0. Setting
t = eiσ and ζ(t) = eτ−iθ in (2.14) yields an equation to determine the unknowns an.

3. Numerical procedure

We solve the problem by truncating the infinite series in (2.13) after N terms. Introducing the
N mesh points

σI = −π

N

(
I − 1

2

)
, I = 1, . . . , N. (3.1)
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The N coefficients an are found by collocation. Using (2.14) we obtain τ(σ ), θ(σ )

and ∂θ
∂σ

in terms of coefficients an. Upon substituting these expressions into (2.14) we
obtain N nonlinear algebraic equations for the N unknowns {an}Nn=1. That is, for each σ(j),

j = 1, . . . , N,

exp(2τj ) − π

α
exp(τj ) sin(σj )|∂θj | = 1,

where τj = τ(σj ), ∂θj = ∂θ
∂σ

|σ=σj
and ζ(tj ) = exp(τj − iθj ) = t

β

π

j exp
(∑N

k=0 ant
2n
j

)
with

tj = eiσj .
The Weber number α and the angle β are parameters. We solve this system by Newton

method for given values of α and β.
To draw the free surface we use the identity

∂x

∂ϕ
+ i

∂y

∂ϕ
= 1

ζ
= 1

u − iv
= e−τ+iθ . (3.2)

In the new variables σ and τ, (3.2) rewrites⎧⎪⎪⎨
⎪⎪⎩

∂x

∂σ
= 2

π
exp(−τ) cos(θ)

1

sin(σ )

∂y

∂σ
= 2

π
exp(−τ) sin(θ)

1

sin(σ )
.

(3.3)

To obtain the form of the free surface A′C ′B ′, we take advantage of the symmetry with
respect to the bisector of the angle AOB. We numerically integrate the expression (3.3) in
the interval −π

2 < σ < 0, letting y(N + 1) and x(N + 1) be the coordinates of the point C ′.
Due to the symmetry of the flow with respect to the bisector of the angle AOB, we can find
the relation x(i + 1) = y(i+1)

tan(
π+β

2 )
for i = 1, . . . , N . The Euler method was used to integrate

numerically the relation (3.3).

4. Results and discussion

We use the numerical procedure described in section 3 to compute solutions of the problem for
various values of the Weber number α. For fixed values of α(0 < α < ∞) and β(0 � β < π)

the coefficients an were found to decrease very rapidly as n increases (table 1).
For values of α very large (α � 102 ) (table 2), all the coefficients of the series (2.13) are

zeros (ai = 0 for all i � 1). This gives the exact solution for (α → ∞)ζ(t) = t
β

π . This result
was compared with the exact solution found via the hodograph transform due to Kirchhoff [3]
and were found to agree exactly. In figure 4, the exact solution via the hodograph transform
for β = π

2 , ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(s) = −1 − 1

π
log

(
1 +

√
1 − s

1 − √
1 − s

)

y(s) = 1 +
1

π
log

(
1 +

√
s

1 − √
s

)
,

(4.1)

was compared with the solution ζ(t) = √
t . The two solutions were found to be identical.

With this numerical procedure we could compute solution for the Weber number α very
small. As an example for β = π

4 , we could compute the solution for all α � 0.13698. For
each value of β (0 � β < π) there exists a critical value α∗ (α∗ very small) of α such that for
α < α∗ the numerical scheme ceases to converge (table 3). The free surface was smooth with
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Table 1. Some values of coefficients an of the series (2.13) for different values of the Weber
number α and for different values of the angle of inclination β.

β α a1 a5 a20 a50

π
4 0.135 − 0.8505 2.0816 × 10−2 1.7697 × 10−3 1.8227 × 10−5

10 −2.3879 × 10−2 8.7610 × 10−4 4.0002 × 10−5 4.1985 × 10−7

α → ∞ −4.004 × 10−21 6.2777 × 10−21 4.0326 × 10−21 1.0547 × 10−21

π
3 2 × 10−3 −5.1231 2.9453 × 10−2 2.5526 × 10−3 2.6324 × 10−5

10 −3.1835 × 10−2 1.1681 × 10−3 5.3336 × 10−5 5.5867 × 10−7

α → ∞ −4.004 × 10−21 6.2777 × 10−21 4.0326 × 10−21 1.0547 × 10−21

2π
3 3 × 10−4 −7.6264 4.8419 × 10−2 4.1284 × 10−3 4.2636 × 10−5

10 −6.3624 × 10−2 2.3362 × 10−3 1.0666 × 10−4 1.1074 × 10−6

α → ∞ −4.004 × 10−21 6.2777 × 10−21 4.0326 × 10−21 1.0547 × 10−21

3π
4 2 × 10−5 −10.2719 5.2193 × 10−2 4.4389 × 10−3 4.5798 × 10−5

10 −7.1559 × 10−2 2.6283 × 10−3 1.1999 × 10−4 1.2429 × 10−6

α → ∞ −4.004 × 10−21 6.2777 × 10−21 4.0326 × 10−21 1.0547 × 10−21

Table 2. Some values of coefficients an of the series (2.13) for different values of the Weber
number α � 100 and for different values of the angle of inclination β.

β α a1 a5 a10 a30 a45

π
4 100 −2.4877 × 10−3 8.0240 × 10−5 1.5586 × 10−5 1.2429 × 10−6 2.4220 × 10−7

200 −1.2469 × 10−3 3.9849 × 10−5 7.7141 × 10−6 6.1363 × 10−7 1.1983 × 10−7

1000 −2.49882 × 10−4 7.9269 × 10−6 1.5300 × 10−6 1.2146 × 10−7 2.3986 × 10−8

π
3 100 −3.3170 × 10−3 1.0698 × 10−4 2.0781 × 10−5 1.6573 × 10−6 3.2294 × 10−7

200 −1.6625 × 10−3 5.3132 × 10−5 1.0285 × 10−5 8.1818 × 10−7 1.5977 × 10−7

1000 −3.3317 × 10−4 1.0569 × 10−5 2.0400 × 10−6 1.6195 × 10−7 3.1981 × 10−8

π
2 100 −4.9754 × 10−3 1.6048 × 10−4 3.1172 × 10−5 2.4859 × 10−6 4.8441 × 10−7

200 −2.4938 × 10−3 7.9698 × 10−5 1.5428 × 10−5 1.2272 × 10−6 2.3966 × 10−7

1000 −4.9976 × 10−4 1.5853 × 10−5 3.0601 × 10−6 2.4293 × 10−7 4.7972 × 10−8

2π
3 100 −6.6339 × 10−3 2.1397 × 10−4 4.1562 × 10−5 3.3146 × 10−6 6.4589 × 10−7

200 −3.3250 × 10−3 1.0626 × 10−4 2.0571 × 10−5 1.6363 × 10−6 3.1955 × 10−7

1000 −6.6635 × 10−4 2.1138 × 10−5 4.0801 × 10−6 3.2391 × 10−7 6.3963 × 10−8

Table 3. Values of the minimal Weber number α∗ for different values of the angle of inclination β.

β π
4

π
3

π
2

2π
3

3π
4

α∗ 0.136 98 0.001 825 0.000 605 0.000 37 0.000 0302

no capillary waves even for small α. For each fixed β and as the Weber number decreases
from ∞ to α∗, the shape of the free surface flattens and tends to a straight line (figures 5–7).

Figure 8 shows the variation of contraction coefficient versus the Weber number α. From
the above numerical results, we conclude that for a fixed value of β (0 � β < π) there exist a
unique solution with a smooth free surface for all α � α∗. Chapman and Vanden-Broeck [5]
showed that capillary waves are exponentially small for all orders. This suggests that the series
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Figure 4. Comparison of the numerical free streamline shape for β = π
2 with the exact results.
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Figure 5. Free streamline shape for β = 3π
4 and various Weber numbers.

formulation provides a good approximation for α � α∗. For a fixed value of β (0 � β < π)

and a given α < α∗ we conjecture that a solution exists with capillary surface waves. The
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Figure 6. Free streamline shape for β = π
2 and various Weber numbers.

-4.00 0.00 4.00

β

The wall 

x

α = 0.2 

α = 0.85 

α = 2 

α = 10 

α = ∞

Figure 7. Free streamline shape for β = π
4 and various Weber numbers.

latter conjectured solution may be computed via an integro-differential equation which is an
appropriate method for surface waves.
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Figure 8. Coordinate of the point yc of the point C′ versus α for β = 3π
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Table 4. Some values of coefficients an of the series (2.13) computed for the Weber number
α = 10 and β = π

2 with different truncation numbers.

N a1 a5 a10 a20 a30 a40 a50

50 −4.7739 × 102 1.7522 × 103 3.6102 × 104 8.0001 × 105 3.0030 × 105 1.1278 × 105 6.7081 × 107

80 −4.7735 × 102 1.7570 × 103 3.6571 × 104 8.5043 × 105 3.5996 × 105 1.8773 × 105 1.0554 × 105

100 −4.7735 × 102 1.7582 × 103 3.6684 × 104 8.6175 × 105 3.7210 × 105 2.0127 × 105 1.2112 × 105

120 −4.7734 × 102 1.7589 × 103 3.6747 × 104 8.6795 × 105 3.7853 × 105 2.0817 × 105 1.2870 × 105

150 −4.7734 × 102 1.7594 × 103 3.6800 × 104 8.7309 × 105 3.8376 × 105 2.1363 × 105 1.3450 × 105

The results presented here are obtained with N = 50. To check the sensibility with
respect to the truncation number N, we computed the solution for fixed α and β for different
values of N. In table 4, we give some values of the coefficients an computed for α = 10 and
β = π/2 with different truncation numbers N = 50, N = 80 and N = 100. Within numerical
accuracy, the coefficients were found to be identical and this confirms the convergence of the
series.
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